تعمیم مفصل فارلی- گامبل- مورگنسترن و ساختار وابستگی آن
نویسندگان
چکیده
با توجه به محدودیت دامنۀ همبستگی و مدل بندی بین متغیرهای وابسته با همبستگی بالا در مفصل فارلی-گامبل- مورگنسترن، در این مقاله، یک تعمیم جدید از مفصل فارلی- گامبل- مورگنسترن برحسب مقاطع چندجملهای در جهت بهبود دامنۀ همبستگی آن با استفاده از نظریۀ ماکسیمم پایا معرفی می شود. در این تعمیم، برخی از ویژگیها و مفاهیم وابستگی نیز مطالعه میشود.
منابع مشابه
مقایسه عددی برخی از اندازه های فی-واگرا برای مفصل های فارلی-گامبل-مورگنسترن تعمیم یافته
این مقاله در جستجوی ملاکی بهینه برای مقایسه برخی از اندازه های فی واگرا است، که در آن میزان وابستگی خانواده مفصل فارلی-گامبل-مورگنسترن تعمیم یافته به روش عددی محاسبه می شود. بر این اساس، اندازه هلینجر به عنوان اندازه فی-واگرای بهینه پیشنهاد می شود
متن کاملتعمیم مفصل فارلی-گامبل-مورگنسترن و ویژگیهای آن
مفصلها توابعی هستند که توابع توزیع چند متغیره را به توابع توزیع حاشیه ای آنها پیوند می دهند و توزیعهای حاشیه ای را از ساختار وابستگی جدا می سازند به همین جهت در مدل بندی بین متغیرهای وابسته استفاده می شوند. یکی از توابع مفصل مهم، مفصل فارلی-گامبل- مورگنسترن (fgm ) است. مفصل دارای دامنهی همبستگی محدود است، از این رو، امکان مدلبندی بین داده ها با همبستگی بالا با این مفصل وجود ندارد. همچنین مفصل...
مفصل فارلی-گامبل-مورگنسترن و مولدهای آن
مفصل ها ابزارهای بسیار مفید و ساده ای برای مدل سازی ساختار وابستگی کلی متغیرهای تصادفی هستند. این تابع ها، توزیع های کناری یک متغیره وابسته را به توزیع های توام آن ها پیوند می دهند. هدف اصلی این پایان نامه، مطالعه خانواده مفصل های معروف به فارلی-گامبل-مورگنسترن، تعمیم ها و تابع مولد های آن ها است. ابتدا مفهوم کلی مفصل و ساختار وابستگی آن ها بیان می شود. سپس خانواده مفصل های فارلی-گامبل- مورگنست...
15 صفحه اولنتایجی در تعمیم زمان از کار افتادگی سیستمهای (n-k+1) از n با واحدهای وابسته
سیستمهای (n-k+1) از n یکی از مهمترین انواع سیستمهای منسجم هستند که کاربردهای زیادی در زمینههای مختلف مهندسی دارند. در این مقاله متغیر تعمیم زمان از کار افتادگی واحدهای شکست خورده سیستمهای (n-k+1) از n هنگامی که سیستم در زمان t>0 از کار افتاده باشد، مورد مطالعه قرار میگیرد. ابتدا سیستمهای موازی شامل دو واحد تبادلپذیر را در نظر گرفته و با استفاده از تابع مفصل فارلی-گامبل-مورگنسترن رفتار تا...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
گستره علوم آماریناشر: دانشگاه پیام نور
ISSN
دوره 1
شماره 1 2015
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023